A test of Darwin's naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors.
نویسندگان
چکیده
Invasive species have great ecological and economic impacts and are difficult to control once established, making the ability to understand and predict invasive behavior highly desirable. Preemptive measures to prevent potential invasive species from reaching new habitats are the most economically and environmentally efficient form of management. Darwin's naturalization hypothesis predicts that invaders less related to native flora are more likely to be successful than those that are closely related to natives. Here we test this hypothesis, using the weed-rich thistle tribe, Cardueae, in the California Floristic Province, a biodiversity hotspot, as our study system. An exhaustive molecular phylogenetic approach was used, generating and examining more than 100,000 likely phylogenies of the tribe based on nuclear and chloroplast DNA markers, representing the most in-depth reconstruction of the clade to date. Branch lengths separating invasive and noninvasive introduced taxa from native California taxa were used to represent phylogenetic distances between these groups and were compared at multiple biogeographical scales to ascertain whether invasive thistles are more or less closely related to natives than noninvasive introduced thistles are. Patterns within this highly supported clade show that not only are introduced thistles more closely related to natives more likely to be invasive, but these invasive species are also evolutionarily closer to native flora than by chance. This suggests that preadaptive traits are important in determining an invader's success. Such rigorous molecular phylogenetic analyses may prove a fruitful means for furthering our understanding of biological invasions and developing predictive frameworks for screening potential invasive taxa.
منابع مشابه
A phylogenetic analysis of the British flora sheds light on the evolutionary and ecological factors driving plant invasions
Darwin's naturalization hypothesis predicts that invasive species should perform better in their novel range in the absence of close relatives in the native flora due to reduced competition. Evidence from recent taxonomic and phylogenetic-based studies, however, is equivocal. We test Darwin's naturalization hypothesis at two different spatial scales using a fossil-dated molecular phylogenetic t...
متن کاملLearning from failures: testing broad taxonomic hypotheses about plant naturalization.
Our understanding of broad taxonomic patterns of plant naturalizations is based entirely on observations of successful naturalizations. Omission of the failures, however, can introduce bias by conflating the probabilities of introduction and naturalization. Here, we use two comprehensive datasets of successful and failed plant naturalizations in New Zealand and Australia for a unique, flora-wid...
متن کاملنقشمایه طاووس در دستبافتههای گلیمی اقوام شاهسون و قشقایی
Peacock is one of the most prominent animal motifs which can be seen as abstract or geometric shapes in kilims woven by nomadic tribes, especially Shahsavan and Qashqai. The diversity of this motif in hand-woven kilims of these two tribes led the author to introduce, classify and then analyze it from different viewpoints such as color and shape. This paper tries to answer the question: Wh...
متن کاملPhylogenetic relationships and morphological diversity in Darwin's finches and their relatives.
Despite the importance of Darwin's finches to the development of evolutionary theory, the origin of the group has only recently been examined using a rigorous, phylogenetic methodology that includes many potential outgroups. Knowing the evolutionary relationships of Darwin's finches to other birds is important for understanding the context from which this adaptive radiation arose. Here we show ...
متن کاملPhylogenetic relatedness predicts priority effects in nectar yeast communities.
Priority effects, in which the outcome of species interactions depends on the order of their arrival, are a key component of many models of community assembly. Yet, much remains unknown about how priority effects vary in strength among species in a community and what factors explain this variation. We experimented with a model natural community in laboratory microcosms that allowed us to quanti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 44 شماره
صفحات -
تاریخ انتشار 2013